

JPA FetchTypes

www.thoughts-on-java.org

What is a FetchType
The FetchType defines when Hibernate gets the related entities from
the database, and it is one of the crucial elements for a fast
persistence tier.

In general, you want to fetch the entities you use in your business
tier as efficiently as possible. But that’s not that easy. You either get
all relationships with one query or you fetch only the root entity and
initialize the relationships as soon as you need them.

Default FetchTypes
The default depends on the cardinality of the relationship. All to-one
relationships use FetchType.EAGER and all to-many relationships
FetchType.LAZY.

How to change a FetchType
You can change the default FetchType by providing your preferred
FetchType to the relationship annotation as you can see in the
following code snippet.

@Entity

@Table(name = "purchaseOrder")

public class Order implements Serializable {

 @OneToMany(mappedBy = "order", fetch = FetchType.EAGER)

 private Set<OrderItem> items = new HashSet<OrderItem>();

 ...

}

http://www.thoughts-on-java.org/

JPA FetchTypes

www.thoughts-on-java.org

FetchType.EAGER – Fetch it so you’ll have it when you need it

The FetchType.EAGER tells Hibernate to get all elements of a
relationship when selecting the root entity.

This seems to be very useful in the beginning. Joining the required
entities and getting all of them in one query is very efficient.

But keep in mind, that Hibernate will ALWAYS fetch the Product
entity for your OrderItem, even if you don’t use it in your business
code. If the related entity isn’t too big, this is not an issue for to-one
relationships. But it will most likely slow down your application if you
use it for a to-many relationship that you don’t need for your use
case. Hibernate then has to fetch tens or even hundreds of additional
entities which creates a significant overhead.

OrderItem orderItem = em.find(OrderItem.class, 1L);

log.info("Fetched OrderItem: "+orderItem);

Assert.assertNotNull(orderItem.getProduct());

05:41:38,726 DEBUG SQL:92 - select orderitem0_.id as id1_0_0_,

orderitem0_.order_id as order_id4_0_0_, orderitem0_.product_id as

product_5_0_0_, orderitem0_.quantity as quantity2_0_0_,

orderitem0_.version as version3_0_0_, order1_.id as id1_2_1_,

order1_.orderNumber as orderNum2_2_1_, order1_.version as

version3_2_1_, product2_.id as id1_1_2_, product2_.name as

name2_1_2_, product2_.price as price3_1_2_, product2_.version as

version4_1_2_ from OrderItem orderitem0_ left outer join

purchaseOrder order1_ on orderitem0_.order_id=order1_.id left outer

join Product product2_ on orderitem0_.product_id=product2_.id where

orderitem0_.id=?

05:41:38,764 INFO FetchTypes:77 - Fetched OrderItem: OrderItem ,

quantity: 100

http://www.thoughts-on-java.org/

JPA FetchTypes

www.thoughts-on-java.org

FetchType.LAZY – Fetch it when you need it
The FetchType.LAZY tells Hibernate to only fetch the related entities
from the database when you use the relationship. This is a good idea
in general because there’s no reason to select entities you don’t need
for your uses case.

The used FetchType has no influence on the business code. You can call
the getter method just as any other getter method.

Hibernate handles the lazy initialization transparently and fetches the
OrderItem entities as soon as the getter method gets called.

This becomes a performance problem when you use it on a large list of
entities. Hibernate then has to perform an additional SQL statement for
each Order entity to fetch its OrderItems.

05:03:01,504 DEBUG SQL:92 - select order0_.id as id1_2_0_,

order0_.orderNumber as orderNum2_2_0_, order0_.version as

version3_2_0_ from purchaseOrder order0_ where order0_.id=?

05:03:01,545 INFO FetchTypes:45 - Fetched Order: Order

orderNumber: order1

05:03:01,549 DEBUG SQL:92 - select items0_.order_id as

order_id4_0_0_, items0_.id as id1_0_0_, items0_.id as id1_0_1_,

items0_.order_id as order_id4_0_1_, items0_.product_id as

product_5_0_1_, items0_.quantity as quantity2_0_1_, items0_.version

as version3_0_1_, product1_.id as id1_1_2_, product1_.name as

name2_1_2_, product1_.price as price3_1_2_, product1_.version as

version4_1_2_ from OrderItem items0_ left outer join Product

product1_ on items0_.product_id=product1_.id where

items0_.order_id=?

Order newOrder = em.find(Order.class, 1L);

log.info("Fetched Order: "+newOrder);

Assert.assertEquals(2, newOrder.getItems().size());

http://www.thoughts-on-java.org/

